In Honor of Per Pinstrup-Andersen:

The Micronutrient Deficiencies Challenge in African Food Systems

Christopher B. Barrett and Leah E.M. Bevis
Charles H. Dyson School of Applied Economics and Management
Cornell University
Two of Per’s (many) major contributions ...

1. A holistic focus on food systems and systems-based approaches to policy analysis and design

2. Calling high-level policy and research attention to the ‘triple burden’ of malnutrition, including often-overlooked micronutrient deficiencies
Persistent, severe micronutrient deficiency

- 25% of the global population suffers from anemia
- 1/3 of school age children suffer from iodine deficiency
- 21% of children under 5 suffer from vit A deficiency
- 1/3 of the global population suffers from zinc deficiency

MN deficiencies deeply problematic b/c of irreversible cognitive/physical effects ... nutritional poverty trap
A foods systems approach

• Why do MN deficiencies decline so slowly with increasing income?
• Answer requires a food systems approach: interlinkages between producers, consumers and market intermediaries
 • Consumers: information problems, nutritional transition, urbanization, prices
 • Food market chains: perishability, food processing, fortification
 • Production: cropping choices, agricultural practices, MN deficiencies in soil, biofortification
Consumer demand patterns

• Information: mild MN deficiencies rarely manifest in obvious sensory ways
 • Does education / increased information about micronutrients decrease MN deficiency?

• Rising GNI is associated with a “nutritional transition”
 • ↓ consumption of traditional staples, ↑ consumption of refined grains
 • ↑ consumption of animal-sourced food – ↑ intake & bioavailability of zinc and iron

• Urbanization
 • Increased opportunity cost of women’s time leads to > intake of fast food, street food
 • Much of this food relies on refined wheat or rice, fats, oils, salt, sugars
The Food Value Chain (FVC)

• Perishability: foods loose vitamins over time, especially at ambient temperatures. Vitamin C & B vitamins are especially unstable.

• Increased processing of grain often removes bran and germ - including much of the Fe, Zn, Ca, vitamins, phytate, and protein

<table>
<thead>
<tr>
<th>Crop</th>
<th>Milling fraction</th>
<th>Iron (µg/g)</th>
<th>Zinc (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>Whole grain</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Degermed grain</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Rice</td>
<td>Brown rice</td>
<td>16</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Polished rice (90% extraction)</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>Sorghum</td>
<td>Whole grain</td>
<td>179</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Refined flour (64% extraction)</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>Wheat</td>
<td>Whole wheat flour</td>
<td>36</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>White flour (70% extraction)</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>

Miller & Welch 2012 Food Policy, Welch & Graham 1999 Field Crops Research

• Food fortification (e.g. milk, sugar, oils, salt) can increase levels of MNs, but success depends on large processing plants, government oversight, and consumer WTP.
Producer decisions

• Micronutrient-deficient soils lead to MN-deficient crops and humans
 • Selenium deficient soils in Malawi cause low selenium intake; can be remedied with selenium-enriched fertilizers (Chilimba 2012 Field Crops Research)

• Green Revolution technologies increases cereal mono-cropping while decreasing production of iron- and zinc-rich legumes
 • South Asia experienced 200% (400%) increase in rice (wheat) production, a decline in diet iron density and a marked increase in anemic women in the 30 years following the Green Revolution (United Nations ACC SCN 1992)

• Increased fertilizer use affects micronutrient levels in plants
Producer decisions

• Biofortification targets poor, agrarian populations. Success depends on adoption, marketability, & longevity of MN density.
Looking forward

The stubborn persistent of micronutrient deficiencies clearly arises at multiple levels of food systems.

Forward-looking policy research and action must:

• Identify where MN deficiencies are severe and widespread
• Determine the root sources of those deficiencies for distinct groups
• Evaluate the cost-effectiveness of options comparatively, across the food system
• Develop useful rules of thumb for targeting interventions to those groups
Thank you, Per (and all)